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Let p(z)=1+�n
j=1 bjz j be a complex polynomial. Two theorems on the coef-

ficients and zeros of p(z) are proved in this paper. � 1999 Academic Press

Let

p(z)=1+b1z+ } } } +bnzn

be a complex polynomial. There is a close connection between the location
of the zeros of p(z) and its coefficients. Some results on the connection were
given by Alzer [1] and Rahman [2].

The following result is a version of Alzer's Theorem.

Theorem A. Let p(z)=1+b1z+ } } } +bnzn with n�2 and bn {0. If
p(z0)=0, then

|z0 |� } bn&1

bn }+\ :
n

j=2 }
bn&j

bn } : j&2+
1�2

, (1)

where

:=\ max
2� j�n }

bn&j

bn }
1�j

+
&1

, b0=1.

In this note, we prove two theorems on the coefficients and zeros of a
polynomial.

Theorem 1. Suppose that p(z)=1+b1z+ } } } +bnzn with bn {0. If
p(z0)=0, then

\ :
n

j=1

|bj | ; j&1+
&1

�|z0 |� :
n

j=1
}
bn&j

bn } # j&1, (2)

where ;=1�max1� j�n |bj |
1�j, and #=1�max1� j�n |bn& j �bn |1�j (b0=1).
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Theorem 2. Suppose that p(z)=1+b1 z+ } } } +bn zn is nonvanishing in
|z|<1. Then

(i) |bn |�1; (3)

(ii) for k=1, 2, ..., n&1 (when n�2),

|bk |�\n&1
k ++\n&1

k&1+ |bn | (4)

(with the convention ( n&1
0 )=1). The estimate (4) is the best possible as the

function p(z)=(1+z)n&1 (1+|bn | z) shows.

Proof of Theorem 1. Write K=�n
j=1 |bj | ; j&1. Then

;K= :
n

j=1

|bj | ; j�1.

Hence, for j=1, 2, ..., n,

|bj | ; j&1K j&1�|b j |.

Thus, for |z|<1�K,

} :
n

j=1

bj z j }< :
n

j=1

|bj | K& j� :
n

j=1

|bj | ; j&1K &1=1.

Hence we obtain that, for |z|<1�K,

| p(z)|�1& } :
n

j=1

b jz j }>0.

This implies that if p(z0)=0, then |z0 |�1�K. The first inequality in (2) is
proved.

Let

q(`)=
1

bn
`np \1

`+=1+
bn&1

bn
`+

bn&2

bn
`2+ } } } +

b1

bn
`n&1+

1
bn

`n.

Since p(z0)=0 we have q(1�z0)=0. It follows from what we have just
proved that

} 1
z0 }�

1

:
n

j=1
}
bn&j

bn }
# j&1,
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where

#=
1

max
1� j�n }

bn&j

bn }
1�j and b0=1.

This proves the second inequality of (2).

We point out that, in some instances, the upper bound of zeros given by
(2) is better than the one given by (1). For instance, let

p(z)=1+bn&1zn&1+bnzn

with bn {0 and p(z0)=0. Then by Theorem A we have

|z0 |� } bn&1

bn }+|bn | &1�n.

However, by Theorem 1 we obtain

|z0 |� } bn&1

bn }+#n&1

|bn |
,

where #=1�max(|bn&1 �bn |, |1�bn | 1�n)�|bn | 1�n. We see that

}bn&1

bn }+#n&1

|bn |
� } bn&1

bn }+|bn |&1�n.

The proof of Theorem 2 needs the following lemmas.

Lemma 1. Let x1 , x2 , ..., xn be real numbers and c=x1x2 } } } xn .

(i) If 0�xk�1 for k=1, 2, ..., n, then

x1+x2+ } } } +xn�n&1+c. (5)

(ii) If xk�1 for k=1, 2, ..., n, then (5) holds also.

(iii) If 0<xk�1 for k=1, 2, ..., n, then

c
x1

+
c

x2

+ } } } +
c

xn
�1+(n&1) c. (6)
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Proof. We prove (i) by mathematical induction. For n=1, (5) is trivial.
Assume (5) holds for n&1. We can assume that x1 x2 } } } xn {0. Hence
xn {0 and c�xn�1. Thus

x1+x2+ } } } +xn&1+xn �n&2+x1 x2 } } } xn&1+xn

=n&2+
c

xn
+xn

�n&2+1+c

=n&1+c.

This proves (i).
Similarly, we can prove (ii).
If 0<xk�1 for k=1, 2, ..., n, then by (ii)

1
x1

+
1

x2

+ } } } +
1

xn
�n&1+

1
x1x2 } } } xn

.

It follows that (6) holds. This completes the proof of Lemma 1.

Let a1 , a2 , ..., an be real numbers. For k=1, 2, ..., n let (a1 , a2 , ..., an ; k)
denote the coefficient of xk in the polynomial >n

j=1 (1+aj x). We have the
following result.

Lemma 2. Let x1 , x2 , ..., xn be real numbers and c=x1 x2 } } } xn with
n�2. If 0�xj�1 for j=1, 2, ..., n, then for k=1, 2, ..., n&1

(x1 , x2 , ..., xn ; k)�\n&1
k ++\n&1

k&1+ c (7)

with the convention ( n&1
0 )=1.

Proof. For n�2, part (i) of Lemma 1 shows that

(x1 , x2 , ..., xn ; 1)=x1+x2+ } } } +xn�n&1+c=\n&1
1 ++\n&1

0 + c.

If c{0, then 0<xj�1, j=1, 2, ..., n. Part (iii) of Lemma 1 shows that

(x1 , x2 , ..., xn ; n&1)=
c

x1

+
c

x2

+ } } } +
c

xn
�1+(n&1) c

=\n&1
n&1++\n&1

n&2+ c.
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If c=0, then at least one xj is zero. We can assume that x1=0. Then

(x1 , x2 , ..., xn ; n&1)=x2x3 } } } xn�1=\n&1
n&1++\n&1

n&2+ c.

Now we have proved that (7) holds for k=1 and k=n&1 whenever n�2.
Now we proceed by mathematical induction. For n=2 and n=3 we

have proved that the claim of Lemma 2 holds as the above shows. Assume
it holds for n. For n+1 it is sufficient to prove that

(x1 , x2 , ..., xn , xn+1 ; k)�\n
k++\ n

k&1+ x1x2 } } } xn xn+1

for k=2, 3, ..., n&1. We can assume that x1 {0. Then for k=2, 3, ..., n&1

(x1 , x2 , ..., xn , xn+1 ; k)

=x1(x2 , x3 , ..., xn+1 ; k&1)+(x2 , x3 , ..., xn+1 ; k)

�x1 _\n&1
k&1++\n&1

k&2+ x2x3 } } } xn+1&+\n&1
k +

+\n&1
k&1+ x2x3 } } } xn+1

=\n&1
k&1+\x1+

x1x2 } } } xn+1

x1 ++\n&1
k&2+ x1x2 } } } xn+1+\n&1

k +
�\n&1

k&1+ (1+x1x2+ } } } xn+1)+\n&1
k&2+ x1x2 } } } xn+1+\n&1

k +
=\n

k++\ n
k&1+ x1x2 } } } xn+1 .

Hence the claim holds for n+1 and this completes the proof of Lemma 2.

Proof of Theorem 2. Let p(z)=1+b1 z+ } } } +bn zn=>n
j=1 (1+:j z).

Since p(z) is nonvanishing in |z|<1, we have |:j |�1 for j=1, 2, ..., n.
Hence

|bn |= |:1:2 } } } :n |�1.

By Lemma 3, for k=1, 2, ..., n&1 (when n�2) we have

|bk |�(|:1 |, |:2 | , ..., |:n |; k)�\n&1
k ++\n&1

k&1+ |bn |.

This completes the proof of Theorem 2.
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