NOTE

On the Coefficients and Zeros of a Polynomial

Dawei Shen

> Department of Applied Mathematics, Beijing Institute of Technology, P.O. Box 327, Beijing 100081, China

Communicated by T. J. Rivlin
Received July 14, 1997; accepted December 8, 1997

Let $p(z)=1+\sum_{j=1}^{n} b_{j} z^{j}$ be a complex polynomial. Two theorems on the coefficients and zeros of $p(z)$ are proved in this paper. © 1999 Academic Press

Let

$$
p(z)=1+b_{1} z+\cdots+b_{n} z^{n}
$$

be a complex polynomial. There is a close connection between the location of the zeros of $p(z)$ and its coefficients. Some results on the connection were given by Alzer [1] and Rahman [2].

The following result is a version of Alzer's Theorem.
Theorem A. Let $p(z)=1+b_{1} z+\cdots+b_{n} z^{n}$ with $n \geqslant 2$ and $b_{n} \neq 0$. If $p\left(z_{0}\right)=0$, then

$$
\begin{equation*}
\left|z_{0}\right| \leqslant\left|\frac{b_{n-1}}{b_{n}}\right|+\left(\sum_{j=2}^{n}\left|\frac{b_{n-j}}{b_{n}}\right| \alpha^{j-2}\right)^{1 / 2}, \tag{1}
\end{equation*}
$$

where

$$
\alpha=\left(\max _{2 \leqslant j \leqslant n}\left|\frac{b_{n-j}}{b_{n}}\right|^{1 / j}\right)^{-1}, \quad b_{0}=1 .
$$

In this note, we prove two theorems on the coefficients and zeros of a polynomial.

Theorem 1. Suppose that $p(z)=1+b_{1} z+\cdots+b_{n} z^{n}$ with $b_{n} \neq 0$. If $p\left(z_{0}\right)=0$, then

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left|b_{j}\right| \beta^{j-1}\right)^{-1} \leqslant\left|z_{0}\right| \leqslant \sum_{j=1}^{n}\left|\frac{b_{n-j}}{b_{n}}\right| \gamma^{j-1}, \tag{2}
\end{equation*}
$$

where $\beta=1 / \max _{1 \leqslant j \leqslant n}\left|b_{j}\right|^{1 / j}$, and $\gamma=1 / \max _{1 \leqslant j \leqslant n}\left|b_{n-j} / b_{n}\right|^{1 / j}\left(b_{0}=1\right)$.

Theorem 2. Suppose that $p(z)=1+b_{1} z+\cdots+b_{n} z^{n}$ is nonvanishing in $|z|<1$. Then

$$
\begin{equation*}
\left|b_{n}\right| \leqslant 1 ; \tag{i}
\end{equation*}
$$

(ii) for $k=1,2, \ldots, n-1($ when $n \geqslant 2)$,

$$
\begin{equation*}
\left|b_{k}\right| \leqslant\binom{ n-1}{k}+\binom{n-1}{k-1}\left|b_{n}\right| \tag{4}
\end{equation*}
$$

(with the convention $\binom{n-1}{0}=1$). The estimate (4) is the best possible as the function $p(z)=(1+z)^{n-1}\left(1+\left|b_{n}\right| z\right)$ shows.

Proof of Theorem 1. Write $K=\sum_{j=1}^{n}\left|b_{j}\right| \beta^{j-1}$. Then

$$
\beta K=\sum_{j=1}^{n}\left|b_{j}\right| \beta^{j} \geqslant 1 .
$$

Hence, for $j=1,2, \ldots, n$,

$$
\left|b_{j}\right| \beta^{j-1} K^{j-1} \geqslant\left|b_{j}\right| .
$$

Thus, for $|z|<1 / K$,

$$
\left|\sum_{j=1}^{n} b_{j} z^{j}\right|<\sum_{j=1}^{n}\left|b_{j}\right| K^{-j} \leqslant \sum_{j=1}^{n}\left|b_{j}\right| \beta^{j-1} K^{-1}=1 .
$$

Hence we obtain that, for $|z|<1 / K$,

$$
|p(z)| \geqslant 1-\left|\sum_{j=1}^{n} b_{j} z^{j}\right|>0 .
$$

This implies that if $p\left(z_{0}\right)=0$, then $\left|z_{0}\right| \geqslant 1 / K$. The first inequality in (2) is proved.

Let

$$
q(\zeta)=\frac{1}{b_{n}} \zeta^{n} p\left(\frac{1}{\zeta}\right)=1+\frac{b_{n-1}}{b_{n}} \zeta+\frac{b_{n-2}}{b_{n}} \zeta^{2}+\cdots+\frac{b_{1}}{b_{n}} \zeta^{n-1}+\frac{1}{b_{n}} \zeta^{n} .
$$

Since $p\left(z_{0}\right)=0$ we have $q\left(1 / z_{0}\right)=0$. It follows from what we have just proved that

$$
\left|\frac{1}{z_{0}}\right| \geqslant \frac{1}{\sum_{j=1}^{n}\left|\frac{b_{n-j}}{b_{n}}\right|^{\gamma^{j-1}}},
$$

where

$$
\gamma=\frac{1}{\max _{1 \leqslant j \leqslant n}\left|\frac{b_{n-j}}{b_{n}}\right|^{1 / j}} \quad \text { and } \quad b_{0}=1 .
$$

This proves the second inequality of (2).
We point out that, in some instances, the upper bound of zeros given by (2) is better than the one given by (1). For instance, let

$$
p(z)=1+b_{n-1} z^{n-1}+b_{n} z^{n}
$$

with $b_{n} \neq 0$ and $p\left(z_{0}\right)=0$. Then by Theorem A we have

$$
\left|z_{0}\right| \leqslant\left|\frac{b_{n-1}}{b_{n}}\right|+\left|b_{n}\right|^{-1 / n} .
$$

However, by Theorem 1 we obtain

$$
\left|z_{0}\right| \leqslant\left|\frac{b_{n-1}}{b_{n}}\right|+\frac{\gamma^{n-1}}{\left|b_{n}\right|},
$$

where $\gamma=1 / \max \left(\left|b_{n-1} / b_{n}\right|,\left|1 / b_{n}\right|^{1 / n}\right) \leqslant\left|b_{n}\right|^{1 / n}$. We see that

$$
\left|\frac{b_{n-1}}{b_{n}}\right|+\frac{\gamma^{n-1}}{\left|b_{n}\right|} \leqslant\left|\frac{b_{n-1}}{b_{n}}\right|+\left|b_{n}\right|^{-1 / n} .
$$

The proof of Theorem 2 needs the following lemmas.

Lemma 1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers and $c=x_{1} x_{2} \cdots x_{n}$.
(i) If $0 \leqslant x_{k} \leqslant 1$ for $k=1,2, \ldots, n$, then

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{n} \leqslant n-1+c . \tag{5}
\end{equation*}
$$

(ii) If $x_{k} \geqslant 1$ for $k=1,2, \ldots, n$, then (5) holds also.
(iii) If $0<x_{k} \leqslant 1$ for $k=1,2, \ldots, n$, then

$$
\begin{equation*}
\frac{c}{x_{1}}+\frac{c}{x_{2}}+\cdots+\frac{c}{x_{n}} \leqslant 1+(n-1) c . \tag{6}
\end{equation*}
$$

Proof. We prove (i) by mathematical induction. For $n=1$, (5) is trivial. Assume (5) holds for $n-1$. We can assume that $x_{1} x_{2} \cdots x_{n} \neq 0$. Hence $x_{n} \neq 0$ and $c \leqslant x_{n} \leqslant 1$. Thus

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n-1}+x_{n} & \leqslant n-2+x_{1} x_{2} \cdots x_{n-1}+x_{n} \\
& =n-2+\frac{c}{x_{n}}+x_{n} \\
& \leqslant n-2+1+c \\
& =n-1+c .
\end{aligned}
$$

This proves (i).
Similarly, we can prove (ii).
If $0<x_{k} \leqslant 1$ for $k=1,2, \ldots, n$, then by (ii)

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} \leqslant n-1+\frac{1}{x_{1} x_{2} \cdots x_{n}} .
$$

It follows that (6) holds. This completes the proof of Lemma 1.
Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers. For $k=1,2, \ldots, n$ let $\left(a_{1}, a_{2}, \ldots, a_{n} ; k\right)$ denote the coefficient of x^{k} in the polynomial $\prod_{j=1}^{n}\left(1+a_{j} x\right)$. We have the following result.

Lemma 2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers and $c=x_{1} x_{2} \cdots x_{n}$ with $n \geqslant 2$. If $0 \leqslant x_{j} \leqslant 1$ for $j=1,2, \ldots, n$, then for $k=1,2, \ldots, n-1$

$$
\begin{equation*}
\left(x_{1}, x_{2}, \ldots, x_{n} ; k\right) \leqslant\binom{ n-1}{k}+\binom{n-1}{k-1} c \tag{7}
\end{equation*}
$$

with the convention $\binom{n-1}{0}=1$.
Proof. For $n \geqslant 2$, part (i) of Lemma 1 shows that

$$
\left(x_{1}, x_{2}, \ldots, x_{n} ; 1\right)=x_{1}+x_{2}+\cdots+x_{n} \leqslant n-1+c=\binom{n-1}{1}+\binom{n-1}{0} c .
$$

If $c \neq 0$, then $0<x_{j} \leqslant 1, j=1,2, \ldots, n$. Part (iii) of Lemma 1 shows that

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n} ; n-1\right) & =\frac{c}{x_{1}}+\frac{c}{x_{2}}+\cdots+\frac{c}{x_{n}} \leqslant 1+(n-1) c \\
& =\binom{n-1}{n-1}+\binom{n-1}{n-2} c .
\end{aligned}
$$

If $c=0$, then at least one x_{j} is zero. We can assume that $x_{1}=0$. Then

$$
\left(x_{1}, x_{2}, \ldots, x_{n} ; n-1\right)=x_{2} x_{3} \cdots x_{n} \leqslant 1=\binom{n-1}{n-1}+\binom{n-1}{n-2} c .
$$

Now we have proved that (7) holds for $k=1$ and $k=n-1$ whenever $n \geqslant 2$.
Now we proceed by mathematical induction. For $n=2$ and $n=3$ we have proved that the claim of Lemma 2 holds as the above shows. Assume it holds for n. For $n+1$ it is sufficient to prove that

$$
\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1} ; k\right) \leqslant\binom{ n}{k}+\binom{n}{k-1} x_{1} x_{2} \cdots x_{n} x_{n+1}
$$

for $k=2,3, \ldots, n-1$. We can assume that $x_{1} \neq 0$. Then for $k=2,3, \ldots, n-1$

$$
\begin{aligned}
\left(x_{1},\right. & \left.x_{2}, \ldots, x_{n}, x_{n+1} ; k\right) \\
= & x_{1}\left(x_{2}, x_{3}, \ldots, x_{n+1} ; k-1\right)+\left(x_{2}, x_{3}, \ldots, x_{n+1} ; k\right) \\
\leqslant & x_{1}\left[\binom{n-1}{k-1}+\binom{n-1}{k-2} x_{2} x_{3} \cdots x_{n+1}\right]+\binom{n-1}{k} \\
& +\binom{n-1}{k-1} x_{2} x_{3} \cdots x_{n+1} \\
= & \binom{n-1}{k-1}\left(x_{1}+\frac{x_{1} x_{2} \cdots x_{n+1}}{x_{1}}\right)+\binom{n-1}{k-2} x_{1} x_{2} \cdots x_{n+1}+\binom{n-1}{k} \\
\leqslant & \leqslant\binom{ n-1}{k-1}\left(1+x_{1} x_{2}+\cdots x_{n+1}\right)+\binom{n-1}{k-2} x_{1} x_{2} \cdots x_{n+1}+\binom{n-1}{k} \\
= & \binom{n}{k}+\binom{n}{k-1} x_{1} x_{2} \cdots x_{n+1} .
\end{aligned}
$$

Hence the claim holds for $n+1$ and this completes the proof of Lemma 2.
Proof of Theorem 2. Let $p(z)=1+b_{1} z+\cdots+b_{n} z^{n}=\prod_{j=1}^{n}\left(1+\alpha_{j} z\right)$. Since $p(z)$ is nonvanishing in $|z|<1$, we have $\left|\alpha_{j}\right| \leqslant 1$ for $j=1,2, \ldots, n$. Hence

$$
\left|b_{n}\right|=\left|\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right| \leqslant 1 .
$$

By Lemma 3, for $k=1,2, \ldots, n-1$ (when $n \geqslant 2$) we have

$$
\left|b_{k}\right| \leqslant\left(\left|\alpha_{1}\right|,\left|\alpha_{2}\right|, \ldots,\left|\alpha_{n}\right| ; k\right) \leqslant\binom{ n-1}{k}+\binom{n-1}{k-1}\left|b_{n}\right| .
$$

This completes the proof of Theorem 2.

REFERENCES

1. H. Alzer, On the zeros of a polynomial, J. Approx. Theory 81 (1995), 421-424.
2. Q. I. Rahman, A bound for the moduli of the zeros of polynomials, Canad. Math. Bull. 13 (1970), 541-542.
